Hilbert {$C\sp *$}-module representation on Haagerup tensor products and group systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Hilbert-Schmidt operators and tensor products of Hilbert spaces

Let V ⊗HS W be the completion of V ⊗alg W in the norm defined by this inner product. V ⊗HS W is a Hilbert space; however, as Garrett shows it is not a categorical tensor product, and in fact if V and W are Hilbert spaces there is no Hilbert space that is their categorical tensor product. (We use the subscript HS because soon we will show that V ⊗HS W is isomorphic as a Hilbert space to the Hilb...

متن کامل

fuzzy projective modules and tensor products in fuzzy module categories

let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...

متن کامل

Inner Products and Module Maps of Hilbert C∗-modules

Let E and F be two Hilbert C∗-modules over C∗-algebras A and B, respectively. Let T be a surjective linear isometry from E onto F and φ a map from A into B. We will prove in this paper that if the C∗-algebras A and B are commutative, then T preserves the inner products and T is a module map, i.e., there exists a ∗-isomorphism φ between the C∗-algebras such that 〈Tx, Ty〉 = φ(〈x, y〉), and T (xa) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1999

ISSN: 0034-5318

DOI: 10.2977/prims/1195143422